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ABSTRACT

Artificial neural network paradigms have shown the capabilities of performing

input-output mapping operations even where the transformation rules are not formally

defined, are partially known, or are ill-defined. For high speed processing of such

information, hardware implementation sarerequired. At the Jet propulsion Laboratory

(JPL), reconfigurable  and cascadable  building block chips have been fabricated using

analog VLSI design tools. These reconfigurable  chips, cascaded together as a

neuroprocessor, are interfaced to a PC to carve out, via software programming, any

specified architecture from a feedback to a feed-fc)rward  network. The building block

chip designs, and the hardware-in-the-loop supervised learning aspects of these chips

are described. The hardware has been tested with the two-input parity problem and

projected to perform for higher parity problems as well. We also report on the ill-

defined and computation-intensive problem of map-data classification. The hardware

results of 89.3 % accuracy are compared with those obtained by simulation, and by

conventional, though slow, statistical techniques where, based on the availability of

ground truth, a 920/. accuracy has been obtained. In addition, a high speed 486-

em beddable neuroprocessor card is highlighted for such image-data processing.

INTRODUCTION

Artificial neural network paradigms are derived from biological nervous system

and are characterized by dense interconnections of simple processing elements.

These processing elements called nodes or neurons are typically analog, have a

multitude of signal-modulating weighted links from other similar neurons and perform

a signal summation function followed by a nonlinear thresholding  operation to the

myriad of incoming signals. Such a structure provides mass’ive parallelism in its
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information processing function, and is known to code and store intelligent information

in a highly distributed manner via the weights of the interconnecting links [1-3].

To harness full power of neural network’s parallelism for obtaining high-speed

solutions to computationally  intensive problems, these parallel architectures have

been implemented in hardware [4-7]. Applications related with image processing,

content addressable memory, sensory information processing, optimization etc. have

been reported in literature [5,8-9]. In general, the analog implementations have been

designed for specific applications with a selected architecture.

Our approach at JPL has been to design and fabricate building block chips that

can be cascaded and reconfigured to cater to different architectures, sizes, and

resolutions of synaptic weights in the analog domain[l  O,l 1]. We describe VLSI

implementations of 32x32 synaptic arrays and arrays of neurons on a chip,

cascadable to larger (say, 64x64) networks and reconfigurable  with full connectivity.

The design offers low power, compactness, and weight resolution scaling up from 7

bits to 13 bits (to permit hardware-in-the-loop Iearning)[l 1 ]. Using these chips,

embeddable 386/486 PC-compatible reconfigurable card has been implemented . A

typical application for ill-defined transformations is presented here requiring a

feedforward architecture and supervised training. The card has been configured to

permit a constructive architecture of Cascade Backpropagation  (CBP) type of hidden-

neuron allocating algorithm with gradient-descent training particularly modified by us

for hardware-in-the-loop learning. The same card has also been configured as a

feedback net to perform such optimization tasks as resource allocation; however, that

application will not be covered here[12].

NEURAL NETWORK HARDWARE

Hardware implementation of neural networks involves design of two elements,

namely synapses which are the variable weight (conductance) links, and neurons

which are the non-linear elements performing a thresholding  operation, Eberhardt, et

al. give a description of various technologies being used for implementation of

electronic neural networks, and the pros and cons of each[l  3]. We describe here the

CMOS implementation where the weights are stored on-chip using digital logic and

incorporating the multiplying digital to analog converters (MDACS) to obtain analog

signal processing [10].
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In effect, a synapse performs the function c)f multiplication of an input current

(obtained via a voltage to current conversion of the input voltage signal) with its stored

weight and provides the output current to a neuron. A neuron sums up several

synapse current signals, converts the current to an equivalent voltage, and via a non-

linear sigmoidal  transfer function provides a bouncjed voltage output. Each synapse

chip, in our embodiment, carries 1024 synapses (as a 32x32 matrix with 32 inputs and

32 outputs) each with 7 bits of weight resolution. Each neuron is designed as a

variable gain operational amplifier with a sigrnoidal  transfer function. Further

refinement of synapse and neuron designs is uncjerway,  and the measurements on

test circuits point to over a ten-fold increase in speed (a reduction in delay from a few

US to less than 250 ns). In addition to the synapse only chips, the neuron-synapse

chips that combine the two designs on a chip with 32x32 matrix, wherein one diagonal

array of synapses has been replaced by 32 neurons, has also been fabricated. Here,

each neuron output is connected to the respective input line. These building block

chips have been fabricated in custom VLSI emplc)ying 2 pm feature size, each in an

84-pin duai-inline-package,  A photograph of the composite chip showing the array of

32 neurons along a principal diagonal is shown in the side box. Being a fully

connected composite chip, it offers a speed exceeding a gigs-connections per second,

and has been instrumental in our applications related research. Schemes where the

synaptic weight values are down-loaded after training in software or where hardware-

in-the-loop learning is involved are easily carried out. By cascading with synapse

chips, powerful hardware neural learning platforms have been developed. Details of

synapse, neuron, and composite chip designs are included as a separate box.

Our overall design philosophy for the building block chips is to make them

reconfigurable  so that several popular neural net architectures such as multilayer

perception, cascade correlation, Hopfield net etc. can be carved out of the chip under

software control. In addition, the chips are designed so that they are cascadable  to

form larger arrays using multiple chips. For hardware-in-the-loop learning capability,

synapse resolution beyond 7 bits would be required. Therefore, an innovative scheme

for increasing the resolution of the synapses was evolved which involves paralleling of

respective synapses on two chips.
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RECONFIGURABILITY

As described above, the neuron outputs in a neuron-synapse chip are

hardwired to the respective inputs. Therefore, it inherently forms a fully connected
feedback network (Hopfield net). Up to 32 inputs and 32 outputs can be obtained for

such a network. Some other popular architectures that can be and have easily been

formed with the same building block chips are described below.

Multi layer Perception Architecture

A schematic diagram of a neuron-synapse composite chip is shown in Figure 1.
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Figure 1. A schematic o~ the neuron-synapse composite chip reconfigured for a

multilayer  perception architecture
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The 7-bit synaptic weights are represented by square blocks at each node of the

matrix and the neurons are shown as a vertical column of triangles at the right of the

matrix, for ease of explanation only, even though they are physically located along the

diagonal. By activating selected synapses, i.e. by having nonzero weights stored, it is

possible to obtain a variety of feedforward nets [14]. Generally, one neuron is

reserved as a bias neuron which also can be tasked to provide the input signals. In

Figure 1, neuron 32 (bottom most) is the bias neuron. Its output is hardwired to the

32nd input line. By activating synapses in block 1, and adjusting their values properly,

the required inputs as current signals will be fed to the input neurons. These synapses

make it convenient to provide inputs in parallel to fill the input neurons. However, the

weight values have to be selected with caution because one needs to use the linear

part of the neuron characteristics for input layer to feed the signals undistorted, as far

as possible, to the next layer. The outputs of these input neurons are again hardwired

to the respective input lines and can be made to feed the selected hidden-layer

neurons by activating synapses in block 2. Similarly, by activating synapses in block

3, the outputs of the hidden units are fed to the input of the output neurons. Block 4

synapses provide biases to the hidden and output layer of neurons. It may be pointed

out that the selection of input and output neurons is generally determined by the

problem requirements and is easily configurecj  onto the chip, the only overall

constraint being that the sum of input, hidden and output neurons per chip not exceed

31, with one neuron acting as a bias neuron.

Constructive Network Architecture

Such constructive networks as cascade correlation [15] and JPL-developed

cascade backpropagation  (CBP) architectures require that one start out with an input

layer of neurons feeding directly to the output layer (single layer perception), and add

one hidden neuron at a time as learning progresses. Details of CBP are given in the

side box. To reconfigure the net for such an architecture using the neuron-synapse

composite chip, we refer to Figure 2 to describe the various synapse block activations.

Obtaining inputs in parallel via the bias neuron and block 1 synapses was already

discussed previously. Activation of synapses in block 5 provides direct input to output

synapse connections. Then, to add the first hidden unit, synapses in the horizonta/

block 2A (input to hidden unit) are activated along with synapses in the verfica/  block

3A (hidden to output neurons). For addition of the next hidden unit, in addition to the
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Figure 2. A schematic of the neuron-synapse composite chip reconfigured for a

constructive architecture such as cascade backpropagation  (CE3P).

synapses in blocks 2 and 3, block 6 synapses are also activated to feed output of the

previous hidden unit as input to the hidden unit just added, and so on. Again, the sum

of total inputs, outputs and hidden units can not exceed 31. However, when required,

because of the cascadability  of the chips, multiple chips can be used to form larger

networks as described below.
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CASCADABILITY

Larger Size Networks

)’\

With the availability of the synapse as well as the composite chips, to increase

the number of inputs and/or outputs beyond 32, additional chips with respective inputs

and outputs connected provide a cascaded larger net. For example, a four-chip (two

synapse-neuron composite chips, 1 & 4, cascaded as a square matrix with two

synapse chips, 2 & 3, to act as a 64x64 matrix of 7-bit-resolution fully connected

synaptic network with 64, wide-range variable gain neurons along a diagonal)

cascaded neural net woulci have twice as many inputs and outputs as a single chip. In

this case, the neuron-synapse chips will receive the current inputs from the synapse

chips, whereas the neuron voltage output of the neuron-synapse composite chips will

be input to the synapse chips.

Higher Synaptic Resolution

As pointed out earlier, it is required that for hardware-in-the-loop learning, the

synaptic weight resolution not be limited to 7 bits. Each additional bit of resolution in

our MDACS requires twice as many current mirrors as that for the previous bit (see

Figure B-l). Thus, normally, if we were to increase the bit resolution of the synapse

from say 7 bits to 8 bits, and since there are 32 current mirrors for the 7th bit, we will

have to add64 extra current mirrors. With each current mirror having two transistors in

(
)the asco~~  circuit, the silicon real estate becomes prohibitively large.

.,,

An innovative scheme was, therefore, employed whereby the resolution of the

synapses could nearly be doubled by parallel connection c)f respective synapses

using two chips. This was achieved as follows. A synapse on one chip was

connected in parallel with the respective synapse in the parallel chip (Vi~ to Vin and 10ut

to 10ut), as shown in Figure 3. One synapse had the input current Ii., whereas the

current in the respective synapse of the parallel

of Vdz. Thus the synapse with input Iin provides

provides the lower significant bits respectively.

chip was adjusted to lin/64 by variation

the higher significant bits and the other
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Figure 3. An innovative scheme of paralleling of respective 7-bit synapses on two

chips with input currents in the ratio 64:1 by adjustment of Vdl and vdz to obtain

nominally 13 bits of resolution.

This simple modification with parallel connections nearly doubled the bit-

resolution for the composite synapse. from 7 to nominally 13 bits. A single neuron

synapse pair from such a circuit, with one synapse-chip and one neuron-synapse

composite-chip, was characterized to obtain the synapse bit-resolution data in

combination with a neuron transfer function. A set of typical curves shown in Figure 4

highlight the input-output relationship along with the variable gain feature of the

neuron design showing 4096 levels of the input weights vs. neuron output. In general,

however, when connected as a populated network, the offset voltages and circuit

noise may keep the effective resolution down to 10 or 11 bits.

Starting with a 4-chip 64x64 matrix, by cascading four additional synapse chips,

thereby paralleling each synapse of the respective two chips as shown schematically

in Figure 5, and adjusting the chip gain levels accordingly, a 64-neuron, fully
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interconnected array with 4032 (64x63) synapses mounted on a board, each with an

effective 10-11 bits of resolution was obtained. This is the first ever embodiment of our

building block chips with a synapse resolution exceeding 7 bits which was used for

hardware-in-the-loop learning of a variety of image classification problems.
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Figure 4. A family of sigmoidal synapse-neuron characteristic curves showing the 13-

bit resolution (t 4096 levels) synaptic weights as inputs and neuron voltages as

output, along with the variable gain feature of the neuron.

To gain insight into the hardware learning, we point out several technical

challenges that the harciware  must contend with. Because of the processing non-

uniformities across the chip, the neuron outputs may not exactly match each other.

Similarly, the synapse weights in the network are bounded and have limited precision.

Therefore, the network must adapt for variances in synapse responses, non-ideal

neuron transfer functions with off-set voltages, anti a variety c)f noise sources. Thus, in

our embodiment, the inputs must also deal with the above variances, although

dedicated input circuitry could remedy much of this. It was anticipated that most of

these variances will be taken care of cluring hardware-in-the-loop training of the

network, and added synapse resolution will be able to provide an accuracy not much

lower than that obtained by software simulations which use a floating point accuracy of

32 or even 64 bits.

9



SUM, I SUM ,1.

~
s —

s I
s -’** I

NE I “
-1

. -— “

I s “ ‘=J-
1

- ~3-
● 0

s N / s 1-
‘* vou~ ,

●

s I
;“--- - - *-----

‘--J“--i== ‘J ● *.
o _~ y

1
0
0

●
●

●

K

I
———

NIS NEURON-SYNAPSE CHIP
s SYNAPSE CHIF’
X, Y DIRECTIONS FOR LARGER SIZE l+--

NEURON CELL

N E T W O R K ~~ S Y N A P S E  C E L L
z DIRECTION FOR HIGHER

SYNAPSE RESOLUTION

Figure 5. A schematic block diagram of 8 chips connected together with 64x64 input-

output matrix and nominally 13-bit synaptic resolution.

PLUG-IN CARD DEVELOPMENT

Based on the development of the building block neuron-synapse chips, a

neuro-processor card was designed and assembled with the required interface

circuitry for direct insertion into the lBM-compatible  backplane. Such an embeddable

and reconfigurable  PC-card fulfills these important needs: (1) It validates the

hardware implementability of a new algorithm, architecture, or application; (2) It

provides real-time solution to the given problem; and (3) It offers a rapid prototyping

tool for a variety of neural net applications with different architectures, thereby

measuring performance parameters such as speed and accuracy, and providing an

insight into further enhancements for the dedicated neuroprocessor  with respect to

chip design, architecture, noise issues, and interface.

The plug-in card, shown schematically in Figure 6, has level shifters for 10V

neural network chips both at its incoming and outgoing side, and a set of buffer and
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driver chips to take the neural output and feed it backto  PC after an A/D stage. To

save on space on the board, a multiplexer stage is introduced to have only one high

speed A/D chip. Control Ic)gic is tasked to control the operation.

PC INTERFACE

Figure 6. A block diagram of the neuroprocessor card showing the control logic, the

level shifter, the neuro-synapse chip, and other logic chips.

The above described neuroprocessor  card, while affording great control and

flexibility, only begins to tap the power of the neural network chips with their parallel

processing and high speed capabilities. With analog processing, the interface with the

host digital machine becomes an intricate challenge to design. As a step toward

reducing the 1/0 bus processing time, a new system with a high-speed 2 MHz analog

to digital converter that plugs directly into the PC-bus was incorporated. Figure 7

shows the assembled neuroprocessing card that is directly insertable in the 386 or

486 machine backplane.

~ The time delay of a synapse-neuron pair was measured@t~an oscilloscope.

The rise and fall times equal 1.5 and 2,2 ps respectively [16]. It must be noted that for

such an analog signal processing, the processing times would vary somewhat

depending upon the number of synapse signals being summed by that neuron, the

individual synapse weight values, and the neuron gain. It was estimated that the

processing time for a typical feedforward pass, that included a hidden layer as well,

had a range of 5-10 microseconds.
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Figure7. A386/486PC-compatible  analog neuroprocessor  card.

LEARNING ALGORITHM

For a hardware-in-the-loop learning with an error backpropagation  (EBP)

algorithm to perform efficient supervised learning, the synapse weight resolution must

be at least 12-16 bits[l 7]. The algorithm used by us for the hardware-in-the-loop

learning was able to provide proper learning even with =11 bits of resolution, and

hence was suitable for our hardware. It is described here as a side box. A more

detailed analysis is given in ref. [18].

Briefly, the JPL-developed  Cascade Backpropagation  (CE3P)  algorithm permits

the starting perception architecture to evolve by allocating hidden neurons as needed,

similar to the constructive algorithm of Cascade Correlation [15]. However, for CBP

the synaptic weight modification method for added hidden units uses gradient-descent

learning, whereas, pseudo-inverse computation is used to directly calculate and

freeze the input-to-output perception weights based on input ancj output patterns (with

an initial compensation for the nonlinear sigmoidal function). A hidden neuron is then

connected from all of the inputs to all of the outputs. Back propagation (gradient-

descent) learning is used to set both the bias and the newly added weights; and the

latter weights are then frozen. Neurons are added in this fashion as hidden units one

at a time to learn the required input to output mapping [12].
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For calculation of the weight modulation during each learning iteration, it is

important to calculate the slope of the transfer characteristics of the neurons at their

respective operating points within that iteration. The main advantage of our hardware-

in-the-loop Iearning process is the capability to obtain this derivative using the actual

hardware characteristics. The process of calculation of the derivative is the following.

The host computer, interfaced to the chips through the interface circuitry, inputs the

incoming pattern to the network and reads the output of the hidden and the output

neurons. It may be noted that hidden unit outputs are available at output pins.

Perturbing the bias weights by small amounts provides the required change in the

neuron operating points and hence allows the calculation of the derivative to be

performed on the data directly obtained using the hardware. With the outputs of all the

neurons (input, hidden, and output) and their respective derivatives known, and the

differences of actual and target outputs determined, the change of weights can now be

calculated as per a chosen learning rate and synaptic weights altered accordingly.

The iterative process repeats until the learning saturates (no change in output)

or reaches a predetermined maximum number of iterations. The learning process is

ended when the desired degree of tolerance between target and the actual network

output is reached. The learning rate is decremented over time. In the present case the

rate was linear. However, in future implementations, we will be using an improved

version of CBP with a step-size decrement proportional to the energy change [18].

The process of learning uses all 13 bits of synapse resolution as available, and even

though the weight updates might occasionally be in error in magnitude or even in sign,

the stochastic nature of analog VLSI eventually causes the non-monotonicities,  if any,

to be bridged[12].

RESULTS

As a benchmark in testing the neural net hardware, we selected the 2-bit parity

problem to be exercised on. For this, one neuron-synapse and one synapse only

chips were used with hardware-in-the-loop training. Simulation results have shown

that at least up to 8-bit parity problems can be consistently solved with only 4-6 hidden

units added [18]. Therefore, it is expected that the hardware will be capable of solving

such larger problems as well. However, instead of solving the other bit-parity

problems in hardware, a computationally  intensive feature classification problem

involving a copious amount of map data was used to test the capability of the network
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to learn from a large set (over 2000) of input-output pairs, again with hardware-in-the-

Ioop learning on the 8-chip board as well as the plug-in card (using abbreviated

learning with the biasing synapses only).

2-Bit Parity Problem

In this 2-bit parity problem, a total of 100 trials were performed. During each

trial, a maximum of 3000 back-propagation learning iterations were executed at the

addition of each hidden unit. Units were added until the ‘true’ outputs were within the

top 2/5 th of the output neuron’s voltage range (O-1 OV), whereas the ‘fa/se’  outputs

were within the bottom 2/5 th of that voltage range. This provided a noise margin of

20°\0  (=2V) for the neuron’s output range. In these 100 trials, the hidden units

allocated by the algorithm were between 1 and 3, with an average of 1.2 hidden units.

A scatter plot was generated where the top left and bottom right corners (O, 1 and 1,0)

were the input conditions that corresponded to ‘true’ outputs, and the bottom left and

top right corners (0,0 and 1,1) were the input conditions for the ‘false’ outputs. It was

observed that while there was a pronounced bias towards ‘true’ outputs, the regions

about the ‘false’ corners were also properly classified.

Map-Data Classification Problem

Paper maps contain a massive amount of important data in an unwieldy format.

To increase its utility, copious amounts of these data have been scanned into digital

map knowledge base where each pixel data is a 3 color, 8-bit per color (24 bits/pixel)

representation. This generates about 10B pixels per map sheet with 24 bits/pixel of

information. However, the user is more interested in, say, display of roads, or rivers,

etc., rather than the shades of colors. Therefore, a further processing involves

extraction of a few (6 to 7) features. This step of feature extraction not only makes the

maps more useful, but also compresses the data from 24 tc), say, less than 3 bits, and

puts it in a format that can be easily manipulated by the analyst as required. We chose

to classify the data using a feed forward neural network for its speed and especially

because of its capability to generate optimal decision surfaces. A key requirement of

the task was to demonstrate the speed potential equaling the CD-ROM rate (=60,000

pixels/sec)[16].
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The map consisted of 305X200-pixel fragment. The map-fragment is shown in

Figure 8 (a) as a grey-scale  rendition of the original color map. Each pixel was to be

classified into one of seven classes (roads, rivers, forests, contour lines,

symbols/names, man-made features, and open areas). A training set of ground truth

consisting of 3800 pixels was generated by an analyst. To enable a pixel to be

classified within its local context, a window of 3x3 surrounding pixels was considered

as input, yielding 27, 8-bit inputs for each pixel classification.

Four approaches were compared for this classification. The first was a software

simulation of the neural network with Cascade Correlation algorithm [1 5,16]. The

second was the hardware-in-the-loop method with CBP. A grey-scale  rendition of the

feature-extracted colored map is shown in Figure 8 (b). In addition, two statistical

techniques of (i) the Bayesian unimodal Gaussian and (ii) the K-nearest neighbors

algorithm[l  9] were used. The latter method is known to be asymptotically optimal (as

the number of training samples grows).

As a measure of evaluation, the accuracy of output classification for the total

map pixels was compared for the four methods as shown in Table 1 [18]. It may be

pointed out that the neural net software simulation performed as well as the K-nearest

neighbor classifier (which is computationally  slow) validating the use of a neural net

armoach..,

Figure 8 (a) A grey-scale rendition of a
305x200-pixel input map with 24 bits/
pixel (8-bit/color x 3 colors/pixel) data.

Figure
hardw
with 3

8 (b). A grey-scale rendition of a
are generated feature-extracted map
bits/pixel data.
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Table 1. Results of classification with different classifiers for the map data
classification.

. - . . -- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q&S&.?? WIQ
--------- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neural Network Simulation 91.2%
Neural Network Hardware 89.3°\o
K-nearest Neighbors 91 .9?40
Bayesian-Unimodal Gaussian 89.80/o

-- . . . . . . . . . . . . . . - . . ---- . . . . . . . . . -------- .------- ------------------------ . . . . . .

As expected, the hardware performance had lower accuracy. However, it was

encouraging to find that in spite of lower resolution, circuit noise, offset voltage effects

etc., the performance was nearly as good as with other methods. The discrepancy in

the hardware performance can also partly be attributed to the fact that no provision for

providing the inputs directly to the network was available and instead input neurons

were used which had their linearity restricted to mid voltage region. This may have

caused some of the lower and upper region inputs to be compressed in bit resolution.

Further, the set-up had an inefficient interface with the host computer. As a result, the

CBP algorithm was designed to minimize the communication at the expense of

learning efficiency.

To test the processing speed in hardware, a neural network was trained in

software, and then the learned weights were downloaded into the plug-in card. To

compensate for the discrepancies between the hardware and the software model, an

abbreviated learning algorithm was applied to just the neuron bias (threshold)

connections. Hardware-in-the-loop training with over 2000 patterns adapted these

weights to the hardware in less than 4 seconds. The complete processing of 61,000

pixels was performed in 8 seconds, the neuroprocessing time being just a fraction of a

second. This implies an overall feed-forward processing rate of -7600 pixels per

second.

This clearly shows that communications still dominate cwer 90% of the feed-

forward processing time. Current efforts are focusing on a next generation plug-in

card with VMEbus interface that — based on experience gained so far — will generate

a multi-fold speed-up in communications. The enhancement is expected to
demonstrate the required speeds equivalent to that of a CD-ROM. This speed

evolution is depicted in Figure 9 [16].
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Figure 9. A graph depicting the speed evolution of an analog

map-data classification.

CONCLUSIONS

neuroprocessor card for

Neurally inspired architectures with their massive parallelism when
implemented in hardware offer near real time processing for certain ill-defined and/or

computation-intensive applications. JPL’s reconfigurable  neuroprocessor  cards are

unique because of their use of analog device implementations that provide

compactness and low power, essential for deployable hardware. Hardware-in-the-

Ioop learning, obtained as a result of innovative high resolution synaptic designs, is an

added feature required for selected time critical applications for applications involving

autonomous guidance, chemical process contrc)l,  vehicle health monitoring, focal

plane image processing, resource allocation/target assignment, and other avionics

applications.

Reconfigurable  neuroprocessor card that directly interfaces with digital host

machine backplane to perform complex, computation-intensive feature extraction

functions is an important step towards neural-based solutions of real world

applications requiring high speed and intelligent information processing. A building-

block approach of VLSI chips offers reconfigurability  and ease of implementation of

architecture-evolving learning methods.
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A new learning algorithm for hardware that obtains the derivatives of the neuron

transfer functions to calculate the weight-change and allocates hidden neurons to an

initial perception architecture is particularly suitable for hardware learning and

reconfigurability.
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A. CASCADE BACKPROPAGATION (CBP)  NEURAL NETWORKS

Fora review of several Iearning  architectures and algorithms in analog neural

network hardware, please see ref. [Al]. The Cascade Backpropagation  (CBP) neural

network derives its architecture from the cascade correlation (CC) neural network

architecture, as proposed by Fahlman  and Lebiere in 1989[A2]. However, the learning

algorithm is derived from the gradient-descent learning method similar to the error

backpropagation  (EBP) which has been studied extensively by researchers and

reported in literature.

1. CBP Architecture

Instead of a priori fixing the neural network topology, it is allowed to evolve as

the adjustment of synaptic weights (learning) proceeds. Thus, the architecture starts

out as a single layer perception network with input and output units (determined based

on the problem at hand) interfaced through a synaptic weight matrix as shown in Fig.

A-1 (with three inputs and two outputs as an example).

Output Units

Synaptic

Input Units Weights
# \/c \

o \ ? \/

o \t \/

Figure A-1. Schematic diagram of a three input-two output perception network.

The weight values can be obtained by such methods as Widrow-Hoff  delta-

rule[A3], Fahlman’s quick-prop[A4],  both of which require adjustment of weights for

learning, or by the pseudo-inverse calculations. At this point, the learning would have

reached a plateau, and the output may not match with the desired response within the
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required tolerance (if it matches, then no more learning is required). For a further

improvement in performance, it would now be necessary to introduce a hidden unit to

the network to obtain a cascade architecture. Along with the introduction of a hidden

unit, a bias line is introduced with a fixed input value of +1, along with the

corresponding new synaptic weights of values selected randomly, as shown in Figure

A-2.

Hidden Unit JOutput Units

Synaptic Weight
Adjustment with

‘eF”’ ‘-

“==!= =EE%wsInput Units 12

13”~- -+1–

B i a s I

Figure A-2. Schematic of CBP architecture

Except for the input to output weights, all

II

after addition of a hidden unit.

other weights are adjusted, with an

introduction of the training patterns as input, using a gradient descent scheme of error

backpropagation.  [The CBP procedure differs from that of the CC in that no correlation

between the output error and the hidden unit outputs is performed]. Learning is

continued until either the output error falls within the allowed tolerance limits or a

certain predetermined number of iterations have been performed without the output

error decreasing below the tolerance limit. The input patterns for each iteration are

selected randomly, and therefore, total number of iterations must be large compared to

the number of input patterns so that each input pattern has a good probability of being

selected for more than one iteration.

At the end of a chosen number of iterations if learning is not complete, the

synaptic weights at the hidden unit input and output lines are now frozen, and a new
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hidden unit is added along with its randomly obtained input and output weights. The

newly added output weights (Wh~), inpUt weights (Whh, Wih), and the bias weights (WbO,

Wbh), shown in Figure A-3, are then modified in the ensuing learning procedure using

the gradient-descent scheme.

The procedure is repeated for each added neuron till the error falls below the

tolerance level thereby completing the training cycle. However, if the error level

saturates with additional hidden neuron not bringing about any useful learning,

thereby signaling that the training would never be cornpletecj,  it signifies that the

present scheme may not be able to solve the problem and a different technique or

architecture is warranted.

PE!II
Y1 Y2

Synaptic Weight
Adjustment with
Error Backprop. 44

0I
n
P
u
t

Synaptic Wei~hts  Frozen

Figure A-3. CBP architecture with addition of a second hidden unit.

Il. Hardware-in-the-Loop Learning Algorithm

The following nomenclatures are followed in cjescrikjing  the algorithm:

Input pattern, p where p = 1 . . . . P;

Input in each pattern, Ii where i = 1 . . . n;

3



Output, yOwhereo=l  through M;

Weight, before introduction ofahidden  layer, from input to output WiO;

Neuron transfer function fo = neuron output vs neuron input;

Transfer functions for hidden and output neurons respectively, f(h), f(o);

Slope of the neuron transfer function f’() = d(output)/d(input)  at value ();

Inverse transfer function, f-l () = neuron input vs neuron output;

Determination in hardware of input-to-output weights by pseudo-inverse

technique (no hidden layer):

By varying inputs and weights, neuron outputs are measured and a lookup

table with circuit inputs, synaptic weights, and corresponding neuron outputs is

prepared .

For every training input (Ii) applied, its corresponding target output (tO) is

measured.

From the lookup table, corresponding to Ii and tO, the weight WiO, and therefore,

(Ii * WiO), which is equal to f-l (o), is obtained.

Pseudo-inverse weights are calculated using equation:

w = (l+) ‘ [f-l(o)],

where 1+ is the pseudo-inverse of the input matrix 1.

Determination with learning in hardware of hidden layer input and output

weights:

At the addition of each hidden neuron, randomly determined weight values are

downloaded atid the change in weights is determined by the formul=:
Aw(o) = ~’(t~-y(j)”)(h’f ’(o);
AW(io) = ~ (tO-yO)*l~f’(o);
AW(bo) = ~,*(to-ye)* 1 *f’(o)
AW(ih)  = ~’xi’f’(h)’  X [Wlj*(tO  - y~)’f’(o)],

where, Z is the summation over all outputs, 1 to M; xi is the input to the newly

added hidden neuron; and the respective f’() is given by the slope at the

operating point of the neuron transfer curve. This slope is calculated by first

measuring, in hardware, the initial neuron output and then the output after

changing the respective bias weight by a (arbitrarily fixed) value of 10.
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B. NEURAL NETWORK BUILDING BLOCK DEVICE DESIGNS

The individual synapse and neuron designs provide the respective

functionalities, i.e., output as a linear function of stored weight for the synapse and as a

sigmoidal  function for a neuron input respectively. Dictated by the architectures,

neurons take in responses from a number of synapses as current signals whereby the

analog current summation can conveniently be done on a wire and fed as input to a

neuron. Further, the neurons provide an output as a voltage signal

multiple fan-outs, can be distributed in a fully parallel fashion to a number

along connection wires.

1. Synapse Chip Design

which, with

of synapses

Our synapse chip design is a 32x32 synaptic crossbar matrix with 32 input and

32 output lines in an 84-pin package. At each node of the matrix is incorporated a

synapse. A schematic of the synapse cell is shown in Figure 1. The synapse design is

based on a static random access memory (SRAM) with 7 bits (6 bits + sign bit) of

resolution having two-quadrant current multipliers as DACS. Decoders for row/column

select and address/data lines provide random accessibility and programmability. The

compactness of the embodiment and cascadability  are aided by coding synapse

inputs as voltages distributed from neuron outputs, and coding the synapse outputs as

analog currents which can be summed directly on a wire feeding as input to neurons.

Along each input line, a voltage to current conversion function is provided with

current mirroring to all the synapse cells along a complete row of synapses to be fed

by that input. The basic synapse circuit then consists of two additional blocks: (i) a 6-

bit digital-to-analog converter (DAC) with digital latches DO to D5 and associated

current mirrors; and (ii) a current steering block with a latch D6, D6. As depicted in

Figure 1, th~.weight  multiplication is obtained thrcmgh  one or more of the six parallel
/stages of ascode urrent mirrors by selective operation of digital latches DO-D5,  and

~)the direction-of 1 e current flow is determined by the latch D6 being in on or off

position.



Figure

row of

Jin_

V(j

?

I
I
I
I
I
I

1 I
t+
D6

Current mirrors i Jvss
and V/i converters 1
common to ali the individual synapse circuits with digital weight storages

synapses aiong  a i in iatches  DO - D5, and +/- currerlt  direction in iatch  D6

row in the matrix i provide 7-bit (6 + sign bit) resolution

B-1. Synapse circuit containing a voltage to current input stage common to a

synapses, a 6-bit multiplying digital to analog convertor, a current steering

circuit, and a 7-bit digital memory.

Il. Neuron Design

A schematic circuit diagram for a neuron is shown in Fig. 2. A negative
feedback circuit in the neuron design forces a virtual ground potential , Vn, onto the

summing (input) node. The comparator output Vc is high or low depending on

whether the input current is positive or negative. This, in turn, causes either transistor

Q1 or Q2 to switch-on, so that the input node sinks c)r sources all the current from the

summing line completing the virtual ground circuit. Further, depending on whether Q1

or Q2 is “ON”, one of the parallel circuits with Q3 or Q4 drives the output. Transistor Q8

applies that current to the output transimpedance node. The output impedance of the
neuron is controlled by Ictrl.  Ictrl  is mirrored to control the impedance of transistors Q8

and Q9, thereby allowing the transimpedance of the neuron to be adjusted. Thus, by

adjusting the current Ictrl,  the gain (slope) of the sigmoid can be controlled over a wide

range. The resulting input-output characteristics are a set of sigmoids with variable

slope.
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Figure B-2. Circuit diagram of a variable gain sigmoidal neuron.

Ill. Neuron-Synapse Composite Chip Design

The synapse chip provides a flexible method for connecting the neurons

together. Theinputs andoutputs of these synapses form respective outputs and inputs

of the neurons. Normally, neural net architectures do not require neurons feeding

back to themselves and the synapses along a principal diagonal in the matrix are

generally not used. Thus, by replacing the diagonal array of synapses by a 32-neuron

array in the synaptic matrix, we obtain a neuron-synapse composite architecture.

Each neuron output is hardwired to the respective input line thus establishing a

Hopfield feedback network. Each neuron output can be fed-forward to “downstream”

neurons or fedback to “upstream” neurons by selective programming of the

appropriate synapse connections. These building block chips were fabricated in VLSI

employing 2pm feature size each in 84-pin dual-inline  package. A photograph of a

neuron-synapse composite chip is shown in Figure 3. A feedforward signal pass

through the chip requires 7-10 ps. Thus an overall speed of over 109 connections per

second is obtainable.
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Figure B-3. A photograph
neurons along the diagonal
matrix.

of a
and

●

✎

t

cascadable  neuron-synapse composite chip with 32
32x31 reconfigurable  7-bit synapses forming a 32x32
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